

Case study: Mediterranean Demo of Cultural-E

Results and outcomes from the design process and the simulationaided activities of the PEB Italian Demonstration Building

> C.Pozza, R.Pinotti – Eurac Research A.Prampolini - AbitCoop

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870072

Cooperativa di Abitazione Modena Ing. Andrea Prampolini

Demo Cases

Demo case Oceanic climate

Demo case **Continental climate**

Demo case Sub-Arctic climate

Climatic context:

temperature, weather, latitude

Cultural context: user behaviour, habits, preferences

climate

Considered along the design process to boost value and optimize costs for PEB

User habits, preferences and expectations

Residential energy consumption by end-use according to 2018 IEA energy efficiency indicators highlights

Building value

Climatic resilience

Positive energy balance

Life cycle

Env. impact CO₂

Italian Demo Case – Castenaso (BO)

Pilot A includes 7 apartments – 4 floors, pilot B includes 6 apartments – 3 floors. Avg 75-110 m2.

Garage at ground level. Garden.

The apartments are made in different sizes for the middle class, dedicated to singles, families, and the elderly.

Building B

8

PIANTA PIANO PRIMO

PIANTA PIANO SECONDO

PIANTA PIANO TERZO

PIANTA PIANO QUARTO

10

Building C - Reference building (nZEB)

Certifications: Casaclima class A, regional certification A4

Innovative technologies

SMART AIR

MOVEMENT

VORTICE

HOUSE

SYSTEM

MANAGEMENT

advanticsys

- Building envelope: insulation layers, windows
- Heating : UFH, PHP
- Cooling : air cooling, PHP
- DHW : PHP
- Controlled ventilation : based on T/H/CO2 room sensors
- Lighting : LED
- Energy production : PV (6 kWp), BESS (6 kWh)
- Monitoring and control : cloud-backed HMS
- Other key aspect : solar shading systems

Challenges

Limited Heating and Cooling capacity

- \rightarrow Need to avoid peaks
- \rightarrow Need to overlap air movement and cooling

Advanced control logics

- \rightarrow Need to consider user occupancy/behaviour
- \rightarrow to manage electric and thermal storages (energy flexibility)

Limited resources for energy production (i.e. roof area) \rightarrow Need to reduce energy consumption

Timeline

4/21: Building permit request 8/21: Final design 9/21: Economic assessment
● 9/21: Start building process 2/23: Delivery 3/23: Start monitoring

Preliminary design Parametric inputs

ITALIAN DEMO PRELIMINARY SIMULATIONS – Parametric inputs

- SET POINT HEATING: 20°C (fixed)
- SET POINT COOLING: 26°C (fixed)
- MECHANICAL VENTILATION 0.5 ACH (fixed) with 70% heat recovery (summar and winter)
- ➢ INFILTRATION 0.15 ACH (fixed)
- ➢ WINDOW (U_frame=0.8 W/m²K):
- Double glazing U=1 W/m²K, g=51%
- Triple glazing U=0.5 W/m²K, g=48%
- SHADING SYSTEM: Absent

SHADING SYSTEM: Basic Control

(Shading factor 80%)

- CLOSED with radiation >140 W/m²
- OPEN with radiation <120 W/m²

SMART CEILING FAN

- Present (allows cooling set point +1.8°C), only day-zones (with big zones 2 have been used)
- Absent

> WALL CHARACTERISTICS:

- 30cm o 40cm insulation
- Insulation type: wood fibre or EPS

SHADING SYSTEM: Advanced Control

culture

(Shading factor 80%)

If INTERNAL Temperature >24°C e T_mean_24h>15°C

- CLOSED with radiation >140 W/m²
- OPEN with radiation <120 W/m²

TOTAL BUILDING ENERGY DEMAND

TOTAL BUILDING ENERGY DEMAND

Smart Ceiling Fan Consumption

TOTAL CONSUMPTION SMART CEILING FAN

ZONA: 7 P3 - APP. A7

Mese: Luglio

Ora di massimo carico della zona:

Carichi termici nell'ora di massimo carico della zona:

18

N.	Descrizione	Qırr [W]	Qπ [W]	Q√ [W]	Q _c [W]	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q₀i [W]
1	SOGGIORNO	493	451	853	717	1819	694	2514
2	CUCINA	323	192	377	273	881	284	1165
5	LETTO SINGOLO 1	42	86	315	250	444	249	693
6	LETTO SINGOLO 2	42	63	330	256	434	258	691
8	LETTO MATRIMONIALE	329	145	447	433	960	394	1354
	Totali	1230	937	2321	1930	4539	1878	6417

Legenda simboli

QIrr	Carico dovuto all'irraggiamento
Q _{Tr}	Carico dovuto alla trasmissione
Qv	Carico dovuto alla ventilazione
Qc	Carichi interni
Q gl,sen	Carico sensibile globale
Qgl,lat	Carico latente globale
Qgl	Carico globale

5.2.3.5.4. BALANCE 4 - ENERGY BALANCE FOR ZONES (NTYPE 904)

B4_QBAL =- B4_DQAIRdt + B4_QHEAT - B4_QCOOL + B4_QINF

The system boundary for this energy balance includes the inside surface node of all surfaces of a zone. Due to this also all radiative heat fluxes appear in this balance. This is different from the balance shown in Section 5.4.1.1 which could only treat the Convective Heat Flux to the Air Node. However the system boundary doesn't include the inside of a wall so the energy of an active layer as well as the stored energy of walls is not part of this balance but of the detailed balance for surfaces (see 5.2.3.5.6). If NType 904 was selected in the output manager, this balance will be printed for all zones in one file (called ENERGY_ZONES.BAL).

	+ B4_QVENT + B4_QCOUP + B4_QTRANS		En E024
	+ B4_QGINT + B4_QWGAIN + B4_QSOL		Eq. 5.2.3-4
	+ B4_QSOLAIR	[kJ/hr]	
Balance:			
B4_QBAL	energy balance for one zone should be always clo the matrix of Type 56 is not inverted all the time, bu	se to 0. In order at only if the erro	r to save time or is less than
0.	a certain tolerance. Due to this fact the energy bala	ance of the zon	e isn't always
B4_DQAIRdt	change of internal energy of zone (calculate +additional capacitance which might be added in	d with capaci TRNBuild)	tance of air
B4_QHEAT	power of ideal heating (convective+radiative)		
B4_QCOOL	power of ideal cooling		
B4_QINF	infiltration gains		
B4_QVENT	ventilation gains		
B4_QCOUP	coupling gains		
B4_QTRANS	transmission into the surface from inner surface r wall, going to a slab cooling or directly transmitted	node (might be)	stored in the
B4_QGINT	internal gains (convective+radiative)		
B4_QWGAIN	wall gains		
B4_QSOL equal	absorbed solar gains on all inside surfaces of zo	ones (NOTE: T	'his gain isn't
	to Balance 1, because the absorbed solar gains windows are taken into account. These absorb	of the inside s ed gains may	surface of all go inside or

For Balance 1, the absorbed gains on the inside and outside node going inside

outside.

are used.)

B4_QSOLAIR convective energy gain of zone due transmitted solar radiation through external windows which is transformed immediately into a con. heat flow to internal air.

BILANCIO DA G44, picco massimo COOLING:

TIME 🖛 T_outdoor	- 12	2+13_B4_QHEAT- 🔽 12+13_B4	_QCOOL+ 🖵 12+	+13_B4	_QINF+ 🔽 12+13_	B4_QVENT+ 🖃	12+13_I	84_QTRANS+ 🖵 12+	13_B	4_QGINT+ 🖵 12	+13_B4_0	QSOL+ 🚽
[HR] °C	[V	V] [W]	[W]]	[\//]		[W]	[W]		[W	/]	
5536.00	38.39	0.00	2561.67		201.53	177.81	> (-405.17)(491.89		2095.56
* * *												

PV system design process

- 1) Optimization of PV and battery for the whole building (energy sharing)
 - Both roof and façade available for PV installation, PV modules (16.5% efficiency) coplanar to the building surface
 - Hourly profiles of electric consumption for h&c, appliances and common areas lighting from **Eurac available data**
 - Target function: **payback of investment** by 15 years considering a fixed rate of interest
 - Cost of electricity: 0.18 €/kWh for consumer, 0.05 €/kWh for provider
 - Cost of PV system: 1500 €/kWp on roof, 2200 €/kWp on façade

PV capacity [kWp]	31
capacity of electric storage	
[kWh]	3.9
self-consumption [%]	60
self-sufficiency [%]	40
annual cumulative balance	
production/consumption	0.70

PV system design process

- 2) Optimization of PV and battery for each apartment and for the whole building (energy sharing)
 - Roof only available for PV installation, PV modules (16.5% efficiency) coplanar to the building surface
 - Hourly profiles of electric consumption for h&c provided by energy simulations, appliances and individual lighting from Load Profile Generator (LPG)
 - Target function: **maximum NPV** at 25th years
 - Cost of electricity: 0.2082 €/kWh for consumer, 0 €/kWh for provider
 - Cost of PV system: 1200 €/kWp

	Flat 1	Flat 2	Flat 3	Flat 4	Flat 5	Flat 6	Flat 7	All flats NO en. sharing	All flats en. sharing
PV capacity [kWp]	7.1	8.4	6.6	6.4	5.8	6.1	9.9	50.2	33.3
Battery capacity [kWh]	0	0	0	0	0	0	0	0	0
Self-consumption [%]	32	35	33	35	43	43	42	40	56
Self-sufficiency [%]	36	39	37	39	47	47	46	44	39

PV system design process

- 3) Simulation of PV and battery for each apartment
 - Fixed PV capacity at 6 kWp per apartment
 - Same input as step 2 but PV modules (17.9% efficiency) tilted on roof (7°)
 - Simulation of four different battery capacities: 0, 3.3, 6.5, 9.8 kWh (ref: LG Chem RESU)

WITH 0 kWh of battery	Flat 1	Flat 2	Flat 3	Flat 4	Flat 5	Flat 6	Flat 7
Self-consumption [%]	30	39	31	31	35	36	54
Self-sufficiency [%]	34	37	36	39	51	51	42

WITH 3.3 kWh of battery	Flat 1	Flat 2	Flat 3	Flat 4	Flat 5	Flat 6	Flat 7
Self-consumption [%]	43	52	44	44	47	49	66
Self-sufficiency [%]	48	49	51	55	70	68	52

WITH 6.5 kWh of battery	Flat 1	Flat 2	Flat 3	Flat 4	Flat 5	Flat 6	Flat 7
Self-consumption [%]	52	62	52	53	54	55	74
Self-sufficiency [%]	58	58	61	68	79	78	58

WITH 9.8 kWh of battery	Flat 1	Flat 2	Flat 3	Flat 4	Flat 5	Flat 6	Flat 7
Self-consumption [%]	58	68	58	59	55	57	80
Self-sufficiency [%]	64	64	67	74	81	79	62

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870072